If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-39v=0
a = 1; b = -39; c = 0;
Δ = b2-4ac
Δ = -392-4·1·0
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-39}{2*1}=\frac{0}{2} =0 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+39}{2*1}=\frac{78}{2} =39 $
| 4(x–1)=(x–8) | | -2v+-76=20 | | 3(x+5)=22(3x+12) | | 2(u+1)=-6 | | −2(−5v+1)+3=3(2v−7)+2v | | -x-130+8x=38 | | 5/2x-1=1/2+3x | | 10v+16=96 | | 2.2t-10.1=0 | | x*0.85=1336.75 | | 51=u+-12 | | F(x)=-2x^2+12x+54 | | 5x-3/9=3x+7/5= | | x-5.2=-18.27 | | 6x-13=-11-4x | | 7(j-77)=91 | | -100=12x+4 | | 4.5x-x^2=5.0625 | | (Y+7)+3(3y-17)=180 | | 2(j-8)-1=1 | | x2=4.5 | | 6x+7=50,x2+25=87 | | 3(2m−1)=4m+7 | | 13÷x=2÷2-x | | 7r+-9=12 | | 107=(5x+9)+(9x) | | -3b-18=12 | | x-4-3x-12=88 | | –9s=–3−8s | | 2x-10-40=100 | | -11x-12=67 | | m/8=(-10) |